数学の事
2020年5月30日 (土)
2020年3月 3日 (火)
周期関数でない関数のフーリエ級数
2020年2月26日 (水)
複素フーリエ級数のファイル
昨日だったかな
複素フーリエ級数で納得できなかった所
an-bniとan+bni
それをCnと両方をしてしまって良いのか?
cosとsinの偶感数と奇関数を考えれば結局は一緒って事が佐藤敏明先生の本では俺は理解できなかった
ネットで佐藤先生以上に分る様に書いてある記事を見つけた
それは-πからπでは無かったが結局は同じこと
佐藤先生の本の証明を俺が書いた
ってか 俺が分る様にしただけ
佐藤先生の本は指数対数と三角関数とフーリエ級数の本を三冊買った
田島一郎さんの解析入門の本は一年近くなるが未だに読み終えてない
読み終える じゃないな
理解して分るまで達してない
でも佐藤先生の本は全てか もっと簡単に理解できる
田島一郎さんの解析入門は数論に近い
どちらが大事だと言えない
どちらも大事
今日も業務中に4時間近く数学してた
2020年2月25日 (火)
ようやく理解した複素フーリエ級数
Cn=1/2(an-bn*i)
Cn=1/2(a-n+b-n*i)
+と-で違うよね
nが-と+でってのは分る
だけど決定的に違うのは上記
分った様な分らない様な・・・
分ったと思っても釈然としなかった
+-では決定的に違う
佐藤敏明先生の本で三角関数とフーリエ変換の本を読んでも納得ができなかった
ネットで広江 克彦のフーリエ変換を読んで分かった
彼は俺と同じ岐阜県出身
同郷の人に教えてもらってる気がした
e^(-n)をe^nにするにはn=1からn=∞をn=-1からn=-∞は分る
だけど決定的に違う+と-
でもenmaの説明で分った
cosは偶感数 sinは奇関数
結局は同じ事ってのが分った
昨夜から今朝も考えていた
会社でdwxにしたが自宅にメールするを忘れた
明日にでもアップしよう
佐藤敏明先生は凄く細かく丁寧に書いてあるが この箇所は丁寧では無かった
フーリエ級数を知るには積分が出来ないと駄目
これでも大学の始まり
数学の奥の深さに怖くなる
俺は老人で数学を どこまで学べるだろう
2020年2月24日 (月)
複素フーリエ級数
今朝の「すき家」は久々にIがいた
彼はテキパキとしてるし仕切ってる
やっぱり「すき家」は牛丼だ
昨日も図書館で2時間程度 苦闘した複素フーリエ級数
やってる意味は分かるが釈然としない所が有る
佐藤敏明先生の本は丁寧過ぎるくらいだが分からない
意味は分かるが厳密には分からない
ほんな事が一週間近い
ほんで休日出勤の今日
業務が片付いてから やり直してみた
やっぱり分からん ってか 納得できん
ネットで調べ
有った
俺の求める数式とは少し違うが意味が分る数式と解説が有った
分った
分った
嬉しい
数学は少しの分からない事が全く分からないと同じ
それが理解できた
休日出勤して仕事を終えての数学で理解できた
嬉しい
お金を得るよりも ずっと嬉しい
嬉しさの濃度が数学は違うね
2020年2月22日 (土)
複素フーリエ級数
納豆朝食を食べようともって牛丼並み
280円だから ついついね
佐藤敏明先生の本の「分る三角関数」でフーリエ級数
複素フーリエ級数
先ほどまで満願の湯から帰って一時間強してた
この箇所は三回以上は読んで書いたが分からなかった
何をしてるのかが分らなかった
今日は午前中は出社してて この箇所を独習してた
本の書いてることは分るが意味が分からなかった
ほんでね
今は本が何をしたいのかが分った
複素数迄範囲を広げるため
佐藤先生のフーリエ変換の本を買ったが三角関数の本を終えてから手を付ける
ここまで理解したので酒飲んでブログ書いてる
2020年2月18日 (火)
活動範囲が少なくなってるのか・・ そうで無いか
俺ね
男だけれど翡翠を少し持ってる
数にしたら6個
すべてミャンマーの翡翠
一番好きなのは写真の翡翠
もっと高いのも持っているが一番気に入ってるのは写真の翡翠
翡翠 カワセミだね
写真の翡翠ももう少し大きければ文句なしだけれどね
少し小さい
カシオの3900円程度の時計と この翡翠のペンダントがお気に入り
ほんで
数学
フーリエ変換を独習してる
佐藤敏明先生の本でね
高木貞二先生の解析概論のフーリエ変換では挫折するのが目に見えてる
でも佐藤敏明先生の本では入り口が分る
分からないよりも入り口でも分かる方がマシ
それから先に進める
でも三角関数のフーリエ変換の所に悪戦苦闘してる
でも佐藤敏明先生の本が無ければフーリエ変換に入ってない
田島一郎さんの解析入門ではフーリエ変換は無い
まず入ってみる
そうしないと先に進めない
分る範囲でで悪戦苦闘してるよりも先に進んで悪戦苦闘する方が良いと思える
2020年2月17日 (月)
数学を理解するために
構造力学を学ぶ必要があって ある本を読みだした
積分ばっかりだった
数学を学ばないと駄目と思って数学を始めた
少しは自信が有った
遠い昔だが高校時代は通年で数学を10で通した
大学も機械学科で教養課程の数学も問題なかった
だけど今思うと大学の質が悪すぎた
εδをやった記憶が無い
今 数学を始める人に何が大事だと問われたら・・・
絶対値の意味と三角不等式
二項定理
三角関数と指数関数と対数関数
虚数も必要だな
さらに数列も必要だ
って どこまで必要だって事になる
それらが有って微積分も積分も分かる
高校数学は絶対にマストだ
εδを完全に理解してなくても積分可能性が分ってなくても
直感の初等数学をマスターしてれば先に進める
俺は積分に躓いた
でも今は積分が好きになった
高校数学の悪い所は 次々に新しい事を学ばせる
それらが単独で現れる
でも実際は全てが絡み合ってる
指数も対数も三角関数も微積分も二項定理も数列も分かってないと大学数学を理解するのは無理
∫にアレルギーを起こす
logにアレルギーを起こす
数学無理だね
俺思う
数学が出来る人とできない人の違いは ほんの少しだけ
俺は幸い でも 最低だが
数学が分るほうに入ってる
閉区間の定義さえ難しい
月曜と木曜日はゴミ出し日
ほんで車で出しに行くが「すき家」が近いので当然に「すき家」に行く
今日も牛丼の並み
スキパスカードで280円だからね
田島一郎さんの解析入門のイプシロンデルタ
理解するには絶対値の意味
絶対値の不等式の意味と解
極限
極限の意味
閉区間の意味
分ってる様で理解したのは 本当に理解したのだろうか
閉区間の意味
右極限と左極限とを∀,E
allとexist
一年かかった
こんな説明は絶対にネットでもない
俺がアホの俺に忘れても分かる様に書いた
昨日の雨の中で外出も出来ない
山に登れない
そんな中で書いた
書き直したのは何度だろう
理解が深まるほどに書き直した
田島先生の説明で分らなかった事や俺の理解不足を見つけて書いた
俺の宝物だ
2020年2月16日 (日)
佐藤敏明先生のフーリエ変換
先ほどアマゾンから届いた
佐藤敏明先生の三角関数の本でフーリエ変換の入り口まで来た
高木貞二さんの解析入門もフーリエ変換は有るが俺の頭では理解できない に決まってる
佐藤敏明先生の指数対数は分りやすかった
三角関数も分りやすかった
入り口だと思うが入り口に入れなかったら どうしようもない
入り口に入れてくれるので佐藤敏明先生には感謝してる
この本は恐らく一か月後に読みだすだろう
でも フーリエ変換の道案内になってくれるだろう
数学は読んだだけで理解できるほど安直でない
苦しいね
でも分かった時の嬉しさのために続けている
より以前の記事一覧
- 積分 基礎が出来てない 2020.02.13
- 極限 2020.02.06
- 理論も大事だけれど・・・ 2020.01.28
- 解析入門のダルブウの定理を完全に理解した 2020.01.25
- 積分 2020.01.23
- やっぱり解析入門は難しい 2020.01.16
- 広義積分の例題 2020.01.08
- 二時間弱数学の元旦 2020.01.01
- 何も無駄になってない 2019.12.24
- 積分の性質 量の加法性 2019.12.23
- ちっとも進まないが繰り返すことも大事な数学 2019.11.27
- アホみたいに積分を復習している 2019.11.12
- 解析入門の積分ばっかり読んでる 2019.11.11
- 数学を独習するに どうしたらいいのか 2019.11.10
- 地道にやるのは嫌だが基本からかな 2019.10.30
- 積分を2週間ぐらいしているので連続関数に戻ってみた 2019.10.25
- ダルブウの定理の清書をした 2019.10.14
- ダルブウの定理 2019.10.13
- なんとか今年中に解析入門を読破したい 積分についても 2019.10.09
- 解析入門の積分 2019.10.07
- 相変わらず数学を続けている 2019.10.02
- 細井勉さんのεδ 2019.09.07
- 解析入門のP71の例題 2019.09.05
- 一番大事な本 2019.09.01
- 解析入門の指数関数の問題 2019.08.26
- 対数関数 2019.08.06
- 毎日 少しだけれど数学してる 2019.07.28
- 指数関数の実数での証明 2019.07.27
- ディレクレーの関数 2019.07.21
- 納豆朝食から連続 2019.07.19
- 分かる本が有りがたい 2019.07.18
- 田島一郎さんの微分積分 2019.07.17
- 毎日続いてる数学 2019.07.14
- アルキメデスの公理 深い 2019.07.12
- 最近ネットで買い物してない 2019.07.11
- 実数の少数展開と二項定理 2019.07.10
- 始まりで深い証明 背理法 2019.07.05
- 糞面白くないブログと実感 2019.07.03
- 一様収束でないf(x)=1/x (0,1] ようやく分かったユーチューバーさんのおかげ 2019.06.29
- 背理法に苦しむ 2019.06.27
- 関数の極限と数列の極限の関係 2019.06.26
- 上に有界な集合Mの上界には必ず最小値が存在する 意味を完全に知る事が 2019.06.26
- 田島一郎さんの解析入門 素晴らしい本 2019.06.25
- 解析入門での有理数と無理数の 2019.06.24
- 数列と関数の極限の関係 ようやく証明が分った 2019.06.16
- 田島一郎さんの解析入門 2019.06.12
- 誤植だな って思う 間違いないと思う 2019.06.10
- 多分これが背理法の一番の証明だろうな 2019.06.09
- 毎日 数学を 2019.06.08
- 次は解析入門と集合と位相 2019.06.07
- 背理法ばっかり 2019.06.06
- とにかく乾杯 イプシロン-デルタ完読 2019.06.01
その他のカテゴリー
1/43ミニカー Anchor Apple AutoCad LT S660 VIGORE VIGORE 2012 VIGORE 2013年 VIGORE 2014年 VIGORE 2015年 VIGORE 2016年 VIGORE 2017年 VIGORE 2018年 VIGORE 2019年 オーディオ キャノンデール キャノンデール2013 キャノンデール2014 キャノンデール2015 キャノンデール2016 キャノンデール2017 キャノンデール2020 パソコン・インターネット ポメラDM200から記載 マイルス・デイビス ミニベロ ミニベロ 2014 ミニベロ2015 三流グルメ 写真とカメラ 山の事 2009年 山の事 2011年 山の事 2012年 山の事 2013年 山の事 2014年 山の事 2015年 山の事 2016年 山の事 2017年 山の事 2018年 山の事 2019年 山の事2020年 山の事2021年 山の事 2010年 数学の事 文化・芸術 旅行・地域 旅行・地域 2014 旅行・地域2015 旅行・地域2017 旅行・地域2018 旅行・地域2019 日記・コラム・つぶやき 日記・コラム・つぶやき2012 日記・コラム・つぶやき2013 日記・コラム・つぶやき2014 日記・コラム・つぶやき2015 日記・コラム・つぶやき2016 日記・コラム・つぶやき2017 日記・コラム・つぶやき2018 日記・コラム・つぶやき2019 日記・コラム・つぶやき2020 日記・コラム・つぶやき2021 映画・テレビ 書籍・雑誌 月一山歩き隊 歩・宿場旅・・・ 残しておきたい上方情緒 残しておきたい江戸情緒 美濃の国だより 美濃の国だより 2 美濃の国だより 2011年 美濃の国だより 2012 美濃の国だより 2013 美濃の国だより 2014 美濃の国だより 2015 美濃の国だより 2016 美濃の国だより 2017 美濃の国だより 2018 美濃の国だより 2021 美濃の国だより2020 美濃の国だより 2019 解析概論と解析入門 趣味のモノ 近江の国 過ぎた思い出 音楽 馬頭観音
最近のコメント